N-ZERO Near Zero Power RF and Sensor Operations

Proposers' Day

Dr. Troy Olsson

1/29/2015

8:00AM - 8:30AM Registration & Poster Set Up

• 8:30AM - 8:40AM Welcome & Ground Rules

• 8:40AM - 9:30AM Program Overview & Structure

9:30AM - 10:00AM
 N-ZERO Q & A

10:00AM - 10:15AM Break

10:15AM - 11:00AM MIT-LL Presentation

11:00AM - 11:30AM Testing & Data Q & A

11:30AM - 12:30PM Lunch / Private Poster Session

• 12:30PM - 1:00PM Break

1:00PM - 5:00PM Open Poster Session & Teaming

• 1:00PM - 5:00PM One-on-One Meetings with the PM

Until the deadline for receipt of proposals:

- Open communications between proposers and the program manager are encouraged.
 - However, any information given to one proposer must be available to all proposers.
- The best way to have a question answered is to submit it via email.
 - Responses will be posted at the Questions and Answers list on the MTO solicitations website.
 - Any question that contains distribution restrictions, such as 'company proprietary', will **not be answered**.

Please submit questions to DARPA-BAA-15-14@darpa.mil

Purpose of this meeting:

- Discuss program objectives and structure.
- Provide opportunity for teaming prior to proposal deadline.

Program Overview

DARPA N-ZERO Vision: Persistent Sensing for the DoD

Geophone recording of activity followed by RF transmission

N-ZERO seeks to greatly extends mission capabilities and lifetime at reduced cost

Current SOA: Awaiting Activity Constrains Mission Life

Current SOA: Awaiting Activity Constrains Mission Life

Current SOA: Awaiting Activity Constrains Mission Life

N-ZERO Vision: OFF but ALERT!

N-ZERO: Devices are OFF (Zero Power Consumption) Yet Continually ALERT!

The N-ZERO Advantage

UGS RF Transceivers

- Staying Alert Requires Active Power
- Wake-Up and Synchronization Consume
 > 95% of Battery Life for Sparse Signals

- OFF but Constantly ALERT
- Wake-Up and Synchronization Do Not Drain Lifetime

DARPA N-ZERO Concept

- N-ZERO <u>senses</u> the environment 100% of the time at near zero power (<10 nW, which is below the leakage rate for small batteries)
- N-ZERO uses energy in the signals to perform <u>pre-processing</u> to detect information while rejecting noise and interference
- Upon <u>detection</u> of an event, N-ZERO triggers activation of the COTS module for further processing and follow-up action

^{*} N-ZERO does not replace COTS functionality. Instead, it aims to significantly reduce COTS "on" time, thereby dramatically increasing the sensor's useful lifetime.

The N-ZERO Challenge and SOA

The Gap Between Signal Levels and Detector Threshold Voltages Is Bridged by Active Power Amplification, Signal Processing and A/D Conversion

A Notional Approach: Passive Sensing

Notional Devices (not limited to these examples)

\$ B

MEMS Switch

Tunnel Field Effect Transistor

Acceleration Switch

Dispersive Delay Line

Piezoelectric Transformer

GHz Dispacement Amplfier

N-ZERO Endeavors to Develop the Technological Base to Close the 10⁶ Gap for a Zero Power Wake-up Capability

Program Objective

- Exploit the energy within a signature to detect and discriminate events of interest while rejecting noise and interference
- N-ZERO signal sensing must be continuous
- Power budget of ≤ 10 nW
- Non-responsive approaches include (but are not limited to)
 - energy harvesting other than from the signature
 - optimized or alternate power sources
 - systems that do not result in continuous sensing

Total anticipated budget:

- \$25M for Technical Area 1 (Microsystems)
- \$5M for Technical Area 2 (Devices)

Expected duration

- 39 months for TA-1
- 27 to 33 months for TA-2

Anticipated individual awards multiple

Anticipated funding type 6.1 and/or 6.2

Technical Areas of Interest

- Technical Area 1 Microsystems
 - (1A) RF Microsystems
 - (1B) Physical Sensor Microsystems
- Can be combined in one proposal Commonality between components encouraged
- ≤10 nW for each

- Technical Area 2 Devices
 - (2A) Digitizing Sensor Microsystems
 - (2B) RF Voltage Amplifiers
 - (2C) Low-Threshold Comparators

DARPA TA-1 - Microsystems

- Full microsystem to detect signatures and produce a digital output bit
- Proposer defined metrics must be justified in the abstract and proposal
- Tested by
 - Proposer
 - Government laboratory

Example N-ZERO Architectures

Most important performance metrics:

Lowest power ≤ 10 nW

Highest probability of detection ≥ 95%

• Lowest false alarm rate ≤ 1/hour

Minimum detectable signal as low as possible

TA-1A RF Microsystems

- Detect RF signature
- Proposers define RF signatures within
 50 MHz to 1 GHz
- Signature specification (by performer) to include:
 - RF carrier frequency
 - Additional tones, chirp rates and durations
 - Pulse repetition rates
 - Modulation types
 - and/or other waveform characteristics
- Signature design to optimize system performance is required
- The system will be able to discriminate the signature of interest in the presence of interfering signals and a noisy RF background
- A proposer-provided 50 Ω SMA or other commonly available RF connection will serve as the sensor's physical input port
- Antenna design is not a part of the N-ZERO program and therefore should not be considered as a means to boost sensor input gain
- Proposals for the development of transmitters to emit this signature waveform are non-responsive to this BAA

DARPA TA-1A RF Microsystem Metrics

Metric	Phase I	Phase II	Phase III
RF Signature Type	RF Tone	RF Chirp	Proposer Defined
RF Level At Sensor Input	≤ -60 dBm	≤ -80 dBm	≤ -100 dBm
RF Frequency Limits	0.05-1 GHz	0.05-1 GHz	0.05-1 GHz
Digital Output Voltage Indicating Positive Detection	≥ 1 V	≥ 1 V	≥ 1 V
Received Energy Required for Signature Detection	≤ 30 pJ	≤ 300 fJ	≤ 3 fJ
Environment*	low interference background	high interference background	high interference background

Proposers must send an email to DARPA-BAA-15-14@darpa.mil with the subject "RF DATA" and/or "SENSOR DATA" to obtain Government-provided data.

DARPA TA-1B Physical Sensor Microsystems

- Detect physical signatures
- Background will contain noise and interferers
- Target electro-mechanical machinery
 - electrical generator
 - passenger car
 - truck
- Select signature features to optimize
 - power
 - probability of detection
 - false alarm rate
 - minimum detectable level
- Government-provided data
 - acoustic
 - vibration
 - ground displacement
 - magnetic field
- Types of sensors must outlined in the abstract and proposal

Measurements are 5m from the generator.

Example N-ZERO Architectures

Single-Modality Sensing

Most important performance metrics:

• Lowest power ≤ 10 nW

Highest probability of detection ≥ 95%

• Lowest false alarm rate ≤ 1/hour

Minimum detectable signal as low as possible

TA-1B Physical Sensor Microsystem Metrics

Metric	Phase I	Phase II	Phase III
Devices to be Detected	Generator	Generator, Car, Truck	Generator, Car, Truck
Signatures to be Utilized for Detection	Performer Defined	Performer Defined	Performer Defined
Distance to Physical Source	< 0.5 m	< 0.5 m	≥ 10 m
Digital Output Voltage Indicating Positive Detection	≥ 1 V	≥ 1 V	≥ 1 V
Environment*	rural	urban	urban

^{*} Proposers must send an email to DARPA-BAA-15-14@darpa.mil with the subject "RF DATA" and/or "SENSOR DATA" to obtain Government-provided data.

DARPA TA-1 Testing Plan Overview

Timeline

TA-2 - Devices

- Microsystems that sense modalities not present in TA-1
- Components that are part of the full N-ZERO microsystem
- Concentrate on high-risk, high-reward components
- Proposer defined metrics must be justified in the abstract and proposal
- Abstract and proposal must contain details on
 - testing plan
 - signature definition and generation
 - selectivity and definition of the selectivity measurement
- Tested by the proposer

Timeline

DARPA TA-2A Digitizing Sensor Microsystems

- Produce a quantized output bit in the presence of a sensor signature
- One- or few-shot sensors are non-responsive to this BAA
- Sensors covering a single sensing modality
- Modalities not covered in TA-1 that are of particular interest:
 - infrared
 - radiation

TA-2A Digitizing Sensor Microsystem Metrics

Metric	Phase I	Phase II
Sensor Type (e.g. light, thermal, etc.)	Performer Defined	Performer Defined
Threshold Level (e.g. in units of lm, ^o C, etc.)	Performer Defined Phase I Goal	< 5 Times Phase I Goal
Digital Output Voltage Indicating Positive Detection	≥ 1 V	≥ 1 V
Sub-Threshold Swing (e.g. in units of Im/decade, °C/decade, etc.)	Performer Defined Phase I Goal	< 5 Times Phase I Goal
Threshold Signature	Performer Defined	Performer Defined
Number of Detection Cycles	> 10	> 1000
Power Consumption When Signature is Absent	≤ 10 nW	≤ 10 nW

DARPA TA-2B RF Voltage Amplifiers

- High-performance voltage gain
- Materials that significantly advance the state-of-the-art are of particular interest
- Center frequency from 0.05 to 1 GHz (proposer-selected)

DARPA TA-2B RF Amplifier Metrics

Metric	Phase I	Phase II
RF Center Frequency Limits	0.05 to 1 GHz	0.05 to 1 GHz
Bandwidth	Proposer Defined	Proposer Defined
Input Source Impedance	50 Ω	50 Ω
Output Impedance	Proposer Defined	Proposer Defined
Voltage Gain/Frequency	10 (V/V/GHz)	40 (V/V/GHz)
Power Consumption	≤ 10 nW	≤ 10 nW

DARPA TA-2C Low-Threshold Comparators

 Low-threshold voltage results in a relaxation of the requirements on other components in the microsystem

DARPA TA-2C Low-Threshold Comparator Metrics

Metric	Phase I	Phase II
Threshold Voltage (V _t)	< 20 mV	< 5 mV
Number of Comparators on a Single Die	3	10
Threshold Voltage Precision	≤ 5 mV	≤ 2 mV
Sub-Threshold Swing from 0 < V _{in} < V _t	< 4 mV/Dec	< 0.5 mV/Dec
Gate Capacitance	< 10 fF	< 10 fF
Resistance at V _{in} = V _t	< 10 kΩ	< 10 kΩ
Number of Cycles	> 10	> 1000
Power Consumption at V _{in} < 0.1 mV	≤ 10 nW	≤ 10 nW

Program Structure

Proposal Evaluation Criteria

- a) Overall Scientific and Technical Merit
- b) Potential Contribution and Relevance to the DARPA Mission
- c) Realism of Proposed Cost and Schedule
- d) Plans and Capability to Accomplish Technology Transition

TA-1

Quantity of 3 identical microsystems at the conclusion of each phase

TA-1A

 Data file containing a time domain representation of the proposer defined RF waveform at the conclusion of each phase

TA-1 and TA-2

- Quarterly technical update reports
- Final report at the end of each phase

TA-1 Microsystems

TA-2 Devices

Dates

Abstracts due	February 20
Proposals due	April 23
Estimated Period of Performance Start	September 1

	TA-1	TA-2
Focus	Microsystems	Devices
Funding	\$25M	\$5M
Phase I	15 mo.	15 mo.
Phase II	12 mo.	12-18 mo.
Phase III	12 mo.	N/A
Power Consumption	≤ 10 nW	≤ 10 nW

		Amplification		
ic all all all all all all all all all al	Signal Collection	Comparator Function	0	Follow up stages consuming active power
		Processing	١	
	N-ZERO	domain (<10nW) —		

Continuous sensing only.

NO energy harvesting outside of the signature or alternate power sources.

Abstracts due	February 20
Proposals due	April 23
Estimated Period of Performance Start	September 1

DARPA-BAA-15-14@darpa.mil

N-ZERO Question and Answer Session

A Notional Approach: Passive Sensing (Slide 13) Credits

- Tunnel FET Alan C. Seabaugh, University of Notre Dame
- MEMS Switch Jeff Pulskamp, ARL
- Acceleration Switch Currano, et al., ARL
- Dispersive Delay Line Vlasov et al., IBM
- Piezoelectric Transformer Sarah Bedair et al., ARL and U. of FL
- GHz Acoustic Focusing Sandia